December 26th, 2013

Metric-driven design

One of my recent resolutions (not for 2014, but for mobile software in general in the last few months) was to evaluate designs of new apps and redesigns of existing apps from the position of trust. Trust in the designers and developers of those apps that they have good reasons to do what they do, even if it’s only one or two steps on the longer road towards their intended interaction model. But Twitter’s recent redesign of their main stream keeps on baffling me.Putting apart the (somewhat business-driven from what I gather) decision of “hiding” the mentions and DMs behind the action bar icons and adding the rather useless discover / activity tabs, I’m looking at the interaction model in the main (home) stream.

Twitter never got to the point of syncing the stream position across multiple devices signed into the same account. There is at least one third-party solution to do that, which requires third-party apps to use their SDK and users to use those apps. The developer of that third-party solution has repeatedly stated that in his opinion Twitter is not interested in discouraging casual users that check their streams every so often. If you start following random (mostly PR-maintained) celebrity streams, it’s easy to get lost in the Twitter sea, and when you check in every once in a while and see hundreds – if not thousands – of unread tweets, you might start feeling that you’re not keeping up.

As I’ve reached the aforementioned decision a few months ago, I’ve uninstalled all third-party Twitter apps I had on my phone, and switched to the official app. It does a rather decent job of remembering the stream position, as long as – from what I could see – I check the stream at least once every 24 hours. When I skip a day, the stream jumps to the top. It also seems to do that if the app refreshes the stream after I rotate the device, so some of this skipping can be attributed to bugs. But in general if I’m checking in twice a day and am careful not to rotate the device, the app remembers the last position as it loads the tweets above it.

In the last release Twitter repositioned the chrome around the main stream, adding discover / activity tabs above it and the “what’s happening” box below. While they encourage you to explore things beyond your main stream, it also looks like they’re aware that these two elements take valuable vertical space during the scrolling. And the current solution is to hide these two bars when you scroll down the stream.

And here’s what baffles me the most. On one hand, the app remembers the stream position, which means that I need to move the content down to get to the newer tweets (as an aside, with “natural” scrolling I’m not even sure if this is scrolling up or scrolling down”). On the other hand, the app hides the top tabs / bottom row when I move the content up.

Is the main interaction mode with this stream is getting to the last unread tweet and then going up the stream to skim the unread tweets, as hinted by remembering the stream position? Or is it getting bumped to the top of the stream and scrolling a few tweets down just to sample the latest few entries in it, as hinted by hiding the two chrome rows and providing more space during the scrolling?

I don’t want to say what the app should or shouldn’t do in the stream (as pointed out by M.Saleh Esmaeili). It’s just that I can’t get what the designers intend the experience to be.

A few days ago The Verge has posted an article around metric-driven design in Twitter mobile apps, an for me personally the saddest part of this article is how much they focus on engagement metrics and how little the guy talks about informed design. Trying to squeeze every possible iota of “interaction” out of every single element on the screen – on its own – without talking about the bigger picture of what Twitter wants to be as a designed system. Experiments are fine, of course. But jacking up random numbers on your “engagement” spreadsheets and having those dictate your roadmap (if one can even exist in such a world) is kind of sad.

When every interaction is judged by how much it maximizes whatever particular internal metric your team is tracking, you may find yourself dead-set on locating the local maximum of an increasingly fractured experience, with no coherent high-level design, and no clear path that you’re taking to arrive to the next level. Or, as Billie Kent’s character in Boardwalk Empire says, “always on the move, going nowhere fast.”

October 4th, 2013

An unfair question

As part of the “In Motion” series, I did a few interviews about screen graphics and the way they are portrayed in futuristic sci-fi movies, and one of the “usual” questions I ask the person is where they see the human-computer interaction going in the next few decades.

And then, as I was talking with Scott Chambliss, the production designer of “Star Trek”, about how he approached designing the computer environment of the Enterprise Bridge, especially given that it’s happening in a rather distant future (250 years from now, give or take), I realized that I’m not really being fair.

Asking such a question immediately puts the other person on the defense. Look at where we were 25 years ago, and look at where we are now. The pace of technological evolution is incredible, and there’s an amazing amount of research going into all these different directions, some proving to be niche experimentation, and some reaching and changing lives of hundreds of millions of people. Asking somebody (who is not an extrovert futurist) to predict what will happen in the next 25 years is unfair. There’s just no way to be able to do that, and there’s an extra layer of being indexed forever and having people point fingers at your old self and how completely wrong you were at the time you made that prediction.

So here’s my resolution. I’m not going to ask this question any more. No more “Where do you see human-computer interaction going in the next 25 years”. Instead, I’m going to ask about where they would like it to go. What is bothering them now, and how that can be eliminated? How this can make our lives better? How this can be enriched without isolating us even more from our fellow human beings?

My own personal take on this is that interacting with computers is too damn hard. Even given that I write software for a living. Computers are just too unforgiving. Too unforgiving when they are given “improperly” formatted input. And way too unforgiving when they are given properly formatted input which leads to an unintentionally destructive output. The way I’d like to see that change is to have it be more “human” on both sides. Understand both the imperfections of the way human beings form their thoughts and intent, and the potential consequences of that intent.

What about you? Where would you take the field of HCI in the next 25 years?

June 6th, 2013

Skeuomorphic. One louder. To eleven.

In my previous lifetime I was a Swing developer. And I liked shiny things. As a proof, here’s the pinnacle (or so I thought, at least) of my explorations in making shiny glossy glitzy buttons. That was around April 2006.

Different UI toolkits provide different capabilities that allow you controlling visual and behavioral aspects. Putting the technical details of styling aside though, UI control styling usually works at the level of an individual control.

And so as I was working on my own look-and-feel library, I heard more and more tidbits about Vista. It was released in January 2007, but it had a long [really really long] history. People kept talking about the three “pillars”, and I was mainly interested in the Presentation one. I don’t have a link, and I can’t even tell if it was a feature that was eventually shelved or just a rumor. But when I heard it, it made a long-lasting impression on me.

The gist of it was that entire UI is a 3D model. You know how they say that buttons should look like something that can be pressed. So you have some kind of z-axis separation. Drop shadows, bevels, some kind of a gradient that hints at the convex surface. And don’t forget to throw in the global lighting model. And so that bit of pixel feature rumor said that the entire UI – from the window level down to an individual control – would be an actual 3D model, with each object living in its own z plane.

So instead of styling each control to create an illusion of z separation (with whatever 2D images are backing each individual control), you would have a spatial model. Each control has its own 3D geometry. Now all you need to do is place the controls in the 3D space, create a few global lights, create a bunch of textures to use on the controls and voila – ship it over to the GPU to compute the final pixels. Want to restyle the UI? Supply a different texture pack and a different lighting model. All the rest is taken care of by the system. Have your own custom control library? Define the 3D meshes for them. All the rest is taken care of by the system.

Now imagine what you can do. If you place two buttons side by side, with just the right tweaking of the meshes and just the right amount of reflection on the textures you can have a button reflecting parts of other buttons around it. And the other way around. You know, all those shiny reflection balls from the early ray tracing demos.

Or, if you model the mouse cursor as an object moving above the window, you can have the back of it reflecting in those controls that it’s passing over. If your control mesh has some kind of a curved contour, the cursor shape would get distorted accordingly as it glides off of the edges.

Or, as you press the button, the press distorts the button mesh as the exact spot of the press, and the entire geometry of the scene reflects that.

I had serious thoughts of doing that. In Swing. That never happened though. Here’s why.

In my mind, there were three big parts to actually doing something like that.

The first one was relatively simple. It would involve transitioning from the point of view of looking at a single control at any point in time towards creating a global view scene that had the entire view hierarchy. There were enough hooks in the API surface to track all the relevant changes to the UI, and even without that you can always say that applications must opt into this mode and have to call some kind of an API that you provide that there are “ready” for you to build that graph.

The second one was also relatively simple. I would need to generate the meshes for all controls. Some are simple (buttons, progress bars), some might be trickier (check marks, sliders). But nothing too challenging. Mostly busy work.

But the last one was the effective non-start. How to actually create the final render of the entire window with acceptable performance? Doing my own 3D engine was kind of out of question. I knew just enough of what is involved to not even begin down that path. So that left me with OpenGL.

JOGL was around at the time, and had a nice momentum behind it. They were gearing towards providing bindings for OpenGL 2.0. There was a lot of activity on the mailing lists. Java3D was another alternative that was under similarly active development. There was even a talk of merging the two. And so I started looking into a simple proof of concept of making a simple JOGL demo on my trusty Windows box.

Around that time (early 2007) Ben Galbraith announced the first (and, posthumously, the only) Desktop Matters conference in downtown San Jose. I left a comment on that announcement. He asked me whether I wanted to make a short presentation on one of my projects. I was quite happy to do so. That was my first public presentation [thanks for the encouragement, by the way!]

It was a nice gathering. Around 100 people, I’d say. And they had quite a few people from the desktop client team at Sun available for informal Q&A. Chris Campbell was my hero at the time (no offense, Chet). The dude was slinging code left and right, showing a lot of great things that could be done with Java2D. He was also working on hardware acceleration of a lot of those APIs. If I remember correctly, he was talking a lot about doing various acceleration on top of OpenGL and Direct3D. Who would be better to validate the overall approach of doing this thing that I wanted to do than him.

I managed to grab him for a few moments. I outlined my thinking. He was polite. He said that it sounded about right. That was just enough encouragement for me.

So after the conference was over I got to actual work. My first private demo was to render a colored sphere. And it looked horrible. It had jagged edges all around it. And it also had visible seams running all over the sphere. I could see the tessellation model before my eyes. It was quite bad.

So I fired off an email to the mailing list. Not about my grand vision. But rather about this specific thing. How to make a sphere look like a sphere. With no jaggies and no tessellation. And they told me to get a “real” graphics card, because whatever integrated graphics card I had on the motherboard is no good for any kind of OpenGL work. And that’s where I stopped.

What’s the point of even thinking going down that road if you must have an expensive graphics card? It might be OK for a demo. It might be OK if I’m satisfying my own itch and showing off my skills with some kind of a thing that runs well on my machine [TM]. But if it can’t be used on “everyday” computers that don’t have those fancy hardware components, it’s a no-go for me.

You might say that I chickened out. I had this grand vision, and folded at the first sign of trouble. But that was – and still remains – my main issue with anything that ends with “GL”. Its never “quite there” promise of commodity hardware availability that is “just around the corner” – and in the meantime, you need this very particular combination of hardware components, drivers and other related software to run. And oh, even if you do have a beefy graphics card, unfortunately it has this driver bug that crashes the entire thing, so you might want to either bug the vendor to fix it, or just disable the whole thing altogether.

Things might have been different. I had really a lot of spare time back then. I might have went down the road of biting the bullet and buying that graphics card (although, as mentioned above, it was not about my own cost, but rather about the reach of the final library). I might have had this thing done in some form or another. Can you imagine buttons reflecting other buttons reflecting the mouse cursor passing above them and rippling as you press them? With the ripple reflected all around that button, and being reflected back in it?

So that never happened. And now it’s all about flat. Flat this. Flat that. Flat *ALL* the things!

June 5th, 2013

Food for thought #8

Chris Harris at 24:40 into episode 47 of Iterate podcast:

I call it undiscovered country. You can imagine it like a bunch of ships arriving on the shore of this new land, and there’s a town there. And that town was iOS when it was first created. You land and you claim this area around it. You’re out there, and you always land to explore. And we’re very much in the infancy of touch-based design. The interesting thing is that we’ve just landed on the shore, and some people are spending all their time designing, effectively, in the town they’ve landed at.

All these ships are arriving, and more people are arriving on the shore and turning up in this town every day. And some of us are saying “Oh my God, you can go over there and claim a mountain and stick a flag on top of it”, and that’s the thing you can do. Loren Brichter was out there and he planted one. There’s a hill right outside the town, a little way down the road but off the beaten track. And he went right out there to stick his flag and claim pull-to-refresh.

That’s the way I look at it. We’ve got this amazing opportunity to go out there and claim mountains for ourselves. It will never come again. We’ve got this opportunity right now to go and claim these mountains right close to the shore. Afterwards, in the distance, people will have to travel further. You’re going to get across mountain ranges in order to find something new, in order to get something new to explore. I want to go to the top of those closest mountains and claim those myself.

That mountain – once you get to the top of it and standing there and saying “Oh my God, that really worked, that was amazing”, and you see all these people and boats clustering down there, and you’re going “Guys, guys, over here”. And down the other side of this mountain, in the valley down hill, there are all these other things that we can do, and that’s the most amazing thing. When you’re at the top of one of those mountains, you get to see things that other people can’t, and that’s where I feel I am right now. Some of us are at the top of mountains looking down the other side into grassy valleys.